306 PARSING WITH ATNS 232

THE FORMALISM 307

3. Only use them for English, or other languages in which word order deter-
mines grammatical structure. ATNs would not be useful in parsing 1nﬂected ‘
languages like Latin.

(defnode =
(cat noun s2 v

{(gotr subj *))),
4, Don't expect them to work all the time. Use them in applications where it’s

helpful if they work ninety percent of the time, not those where it’s critical "

{defnode 82
that they work a hundred percent of the time.

‘(cat verb s3

(setr v *)))
Within these limits there are plenty of useful applications. The canonical example

is as the front-end of a database. If you attach an ATN-driven interface to such
a system, then instead of making a formal query, users can ask questions ina
constrained form of English.

(defnode 83
" (up ‘(sentence
(subject ,(getr subj))
(verb ,(getr v)))))
23.2 The Formalism

| Figure 23.1: A very small ATN.
To understand what ATNs do, we should recall their full name: augmented transi-

tion networks. A transition neiwork is a set of nodes joined together by directed
arcs—essentially, a flow-chart. One node is designated the start node, and some
‘other nodes are designated terminal nodes. Conditions are attached to each arc,
which have to be met before the arc can be followed. There will be an input
sentence, with a pointer to the current word. Following some arcs will cause the
pointer to be advanced. To parse a sentence on a transition network is to find a
path from the start node to some terminal node, along which all the conditions
canbe met. - '

ATNs add two features to this model:

Figure 23.2: Graph of a small ATN.,

you can foliow me if the current word is a noun, and if you do, you must store
the current word (indicated by *) in the subj register. So we leave this node with
. 8pot stored in the subj register.
There is always a pointer to the current word. Initially it points to the first
word in the sentence. When cat arcs are followed, this pointer is moved forward
3 one. So when we get to node s2, the current word is the second, runs. The
second arc is just like the first, except that it is looking for a verb. It finds runs,
stores it in register v, and proceeds to s3.
The final node, £3, has only a pop, or terminal, arc. (Nodes with pop arcs have
dashed borders.) Because we arrive at the pop arc just as we run out of i input, we
have a successful parse. The pop arc returns the backqueted expression within it;

1. ATNs have registers—named slots for storing away information as the parse

proceeds. As wellas performing tests, arcs can modify the contents of the
registers. ' :

2. ATNs are recursive. Arcs may require that, in order to follow them, the
parse must successfully make it through some sub-network.

Terminal nodes use the information which has accumulated in the registers to
build list structures, which they return in much the same way that functions return
values. In fact, with the exception of being nondeterministic, ATNs behave a lot
like a functional programming language.

The ATN defined in Figure 23.1 is nearly the simplest possible. It parses noun- -
verb sentences of the form “Spot runs.” The network representation of this ATN
is shown in Figure 23.2.

What does this ATN do when given the input (spot runs)? The first node has

Ana Antoning are a cat ot cateonry are leadine o nnde 22 Tt eave effectivelv.

: (_sentence (aubject spot)
(verb runs))

An ATN corresponds to the grammar of the language itis desngned to parse A

Aarant cimad AR Frm smamalon TTa 1L o200 Lo




