I

322 PROLOG

proleg programs

prolog
nondeterministic choice

pattern-matching
continuation-passing macros

lisp + Utilities

Figure 24.1: Layers of abstraction.

> (fact painter reynolds)

(REYNOLDS)

> (fact painter gainsborough)

{GAINSBOROUGH)

> (with-answer (painter ?x)
(print 7x))

GAINSBOROUGH

REYNOLDS

NIL

+ Conceptually, Prolog is the database program with the addition of rules, which

make it possible to satisfy a query not just by lookirig it up in the database, but by
inferring it from other known facts. For example, if we have a rule like:

If - (bungry ?x) and (smells-of 7x turpentine)
Then (painter 7x) °

then the query (painter 7x) will be satisfied for 7x = raoul when the database
contains both (hungry raoul) and (smells—of raocul turpentine), even
if it doesn’t contain (painter raoul).

In Prolog, the if-part of a rule is called the body, and the then-part the head.
(In logic, the names are antecedent and consequent, but it is just as well to have
Separate names, to emphasize that Prolog inference is not the samé as logical
implication.) When trying to establish bindings! for a query, the program looks
first at the head of a rule. If the hiead matches the query that the program is trying
to answer, the program will then try to establish bindings for the body of the rule.
Bindings which satisfy the body will, by definition, satisfy the head.

The facts used in the body of the rule may in turn be inferred from other rules:

IMany of the concepts used in this chapter, including this sense of bindings, are explained in

2422 AN INTERPRETER 323

If (gaunt 7x) or (eats-ravenously 7x)
Then (hungry 7x) o

and rules may be recursive, as in:

If (surname ?f ?n) and (father 7f 7c)
Then (surnams 7c 7n)

Proilog will be able to establish bindings for a query if it can find some path
through thé rules which leads eventually to known facts. So it is essentially a

search engine: it traverses the tree of logical implications formed by the rules,

look_ing for a successful path.

 Though rules and facts sound like distinct types of objects, they are conceptu-
ally interchangeable. Rules can be seen as virtual facts. If we want our database
to reflect the discovery that big, fierce animals are rare, we could look for all the

- x such that there are facts (species x), (big x), and (fierce x), and add a

new fact (rare x). However, by defining a rule to say

If (species 7x) and (big ?x) and (fierce 7x)
Then (rare ?x)

we get the same effect, without actually having to add all the (rare x) to the
database. We can even define rules which imply an infinite number of facts. Thus
rules make the database smaller at the expense of extra processing when it comes
time to answer questions.

Facts, meanwhile, are a degenerate case of rules, The effect of any fact F
could be duplicated by a rule whose body was always true:

: If true
Then F

To simplify our implementation, we will take advantage of this principle and
represent facts as bodyless rules,

242 An Interpreter

‘Section 18.4 showed two ways to define if-match. The first was simple but

inefficient. Its successor was faster because it did much of its work at compile-
time, We will follow a similar strategy here. In order to introduce some of the
topics involved, we will begin with a simple interpreter. Later we will show how

