90 MACROS

(while hungry
{(stare-intently)
(meow)
(rub-against-legs))

(do O
{(not hungry))
(stare-intently)
{meow)
{rub-against-legs))

Figure 7.3: Diagram used in writing while,

(defmacro memq {obj 1lst)
‘ (member ,obj ,1lst :test #’eq))

So far, we can only write macros which take a fixed number of arguments.
Now suppose we want to write a macro while, which will take a test expression
and some body of code, and loop through the code as long as the test expression
returns true. Figure 7.3 contaiﬁs an example of a while loop describing the
behavior of a cat.

To write such a macro, we have to modify our technique slightly. As before,
begin by writing down a sample macro call. From that, build the parameter list
of the macro, but where you want to take an indefinite number of arguments,
‘conclude with an.&rest or ¥body parameter:

(defmacro while (test &body body)

Now write the desired expansion below the macro call, and as before draw lines
connecting the arguments in the macro call to their position in the expansion.
However, when you have a sequence of arguments which are going to be sucked
into a single &rest or &body parameter, treat them as a group, drawing a single
line for the whole sequence. Figure 7.3 shows the resulting diagram,

To write the body of the macro definition, proceed as before along the expan-
sion. As well as the two previous rules, we neeq one more:

3. If there is a connection from a series of expressions in the expansion to a
series of the arguments in the macro call, write down the corresponding
&rest or &body parameter, preceded by a comma-at,

~ w.e LI AR L L IR T

74 TESTING MACROEXPANSION 91

(defmacro while (test &body body)
‘{do ()
{{not ,test))
+@bady))

To build a macro which can have a body of expressions, some parameter has to
act as a funnel. Here multiple arguments in the macro call are joined together into
bedy, and then broken up again when bedy is spliced into the expansion.

The approach described in this section enables us to write the simplest
macros—those which merely shuffie their parameters. Macros can do a lot
more than that. Section 7.7 will present examples where expansions can’t be
represented as simple backquoted lists, and to generate them, macros become
programs in their own right,

7.4 Testing Macroexpansion

Having written a macro, how do we test it? A macro like memgq is simple enough
that one can tell just by looking at it what it wilt do. When writing more compli-
cated macros, we have to be able to check that they are being expanded correctly.

Figure 7.4 shows a macro definition and two ways of looking at its expansion,
The built-in function macroexpand takes an expression and returns its macroex-
pansion. Sending a macro call to macroexpand shows how the macro call will
finally be expanded before being evaluated, but a complete expansion is not al-
ways what you want in order to test a macro. When the macro in question relies
on other macros, they too will be expanded, so a complete macroexpansion can
sometimes be difficult to read.

From the first expression shown in Figure 7.4, it’s hard to tell whether or not
while is expanding as intended, because the built-in do macro gets expanded, as
well as the prog macro into which it expands. What we need is a way of seeing
the result after only one step of expansion. This is the purpose of the built-in
function macroexpand-1, shown in the second example; macroexpand-1 stops
after just one step, even if the expansion is still a macro call,

When we want to look at the expansion of a macro call, it will be a nuisance
always to have to type

(pprint (macroexpand-1 ’(or x y)))
Figure 7.5 defines a new macro which allows us to say instead:

(mac (or x y))

Typically you debug functions by calling them, and macros by expanding



